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Steady Taylor vortices were studied by electrodiffusion probes in the gap between coaxial
cylinders. The inner cylinder was driven by a stepping motor and the outer cylinder was
fixed. The viscosity of standard potassium hexacyanoferrates (III) and (IV) aqueous solution
was increased to 2.52 mPa s by addition of poly(alkylene glycol) Emkarox 45. The velocity
gradient components were measured by two three-segment probes at the wall of the outer
cylinder for four radius ratios, R1/R2 = 0.8, 0.75, 0.65 and 0.6. The axial distribution of the
azimuthal and axial components of velocity gradient was mapped while Taylor vortices were
swept along the probes by a slow axial flow. The components of velocity gradient were de-
scribed by fourth-order Fourier series. Generalized dependencies were found of the Fourier
coefficients on Taylor number. A vertical shift of the probes made it possible to calculate the
wavelength and the drifting velocity of Taylor vortices. Critical Taylor numbers were esti-
mated from the axial component of velocity gradient and by the flow visualization using a
rheoscopic liquid. The torque was calculated from the azimuthal component of velocity gra-
dient.
Key words: Electrodiffusion method; Three-segment probes; Taylor vortices; Electrochemistry.

Due to the centrifugal forces the laminar flow in the gap between an inner
rotating and outer fixed coaxial cylinders becomes unstable at a critical
Taylor number. Toroidal counter-rotating Taylor vortices with a height
equal approximately to the gap width replace the original Couette flow1. At
higher rotation rates, azimuthal waves are superposed on the Taylor vorti-
ces. Further increase in rotation rate induces azimuthal waves with modu-
lated amplitude, then turbulent flow occurs in cells occupied earlier by
vortices and, finally, the turbulent flow spreads throughout the whole gap.
Taylor vortices and the following states have been studied both theoreti-
cally2 and experimentally3.

Taylor–Couette flow with a superposed slow axial flow has many poten-
tial applications. Legrand and Coeuret4 and Desmet et al.5 studied mixing
in cells with the aim of making use of this type of flow in chemical reactors
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because the time distribution spectrum is very narrow and the velocity gra-
dients are low. Kataoka et al.6 showed that flow with modulated azimuthal
waves and weakly turbulent cells is convenient for emulsion polymeriza-
tion of styrene. Taylor vortices are used for the prevention of concentration
polarization and membrane fouling in separation processes7.

Wall velocity gradient or wall shear stress is an important parameter in
the above applications. Their mean values are known from torque measure-
ments8. However, these measurements do not elucidate the gradient distri-
bution. The gradient maximum could be much greater than the mean
values. Cognet9 measured the maximum and minimum values of the
limiting diffusion current on the wall of the outer fixed cylinder in Taylor–Couette
flow. He used a simple circular electrode and did not interpret the results as a
wall velocity gradient. Sobolík et al.10 showed that three-segment electro-
diffusion probes are capable of mapping the azimuthal and axial compo-
nents of the wall velocity gradient.

This study is devoted to systematic measurements of velocity gradients at
the outer wall of a cylindrical Couette apparatus with stable Taylor vortices.
The axial distribution of the azimuthal and axial components is studied as a
function of rotation rate and inner cylinder diameter. Three-segment
electrodiffusion probes are used for the decomposition of wall velocity gra-
dient into its components. This paper is an extension of the previous pa-
per10 in the following directions. Two vertically shifted probes are used to
verify the measurements and to obtain the axial scale – wavelength of vorti-
ces. The diameter ratio of the cylinders is extended to 0.65 and 0.6. A more
viscous fluid is used to get a better accuracy, especially near critical Taylor
numbers for small η. A better control of the inner cylinder rotation is
achieved by using a stepping motor.

EXPERIMENTAL

Experimental Apparatus

The experimental apparatus is shown in Fig. 1. It consisted of an outer cylinder 3 made of a
Plexiglas tube with an inner diameter of R2 = 60.7 ± 0.2 mm and an interchangeable inner Plexi-
glas cylinder 4. The inner cylinders had a length of 275 mm and diameters of R1 = 48.5,
45.5, 39.4 and 36.4 mm. For calibration of electrodiffusion probes in situ, annular rings with
an outer diameter of 57.6 mm could be slid on each cylinder. Higher velocity gradients in a
still laminar Couette flow were achieved in this small gap of 1.55 mm. The corresponding
radius ratios, η = R1/R2, were 0.95, 0.8, 0.75, 0.65 and 0.6. The inner cylinder was mounted
on the stainless steal shaft 5 which had an upper ball bearing and bottom polyamide sliding
bearing. The shaft was driven by a stepping motor with a step of 0.9° and a gear box with a
slow-down ratio of 1 : 9. There was a plastic clutch between the shaft and gear box which
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also served as electrical insulation. The revolutions were controlled by a computer directly
from the measuring software.

Two three-segment electrodiffusion probes 1 and 2 were embedded in the wall of the
outer cylinder. The probes faced each other, which meant that the angle between them was
180°, but they were not at the same horizontal level. The vertical shift of 5 mm enabled cal-
culation of the length of vortices from the measured signals. With the aim of obtaining the
axial distribution of the velocity gradient components, the Taylor vortices were swept along
the probes by a small axial flow. The liquid was circulated by a pump (Fluid Metering Inc.)
with a valveless piston head (RH0CKC) having a piston of a diameter of 1/16’’. The maxi-
mum volume per stroke was 0.05 ml and the maximum flow rate was 0.38 ml s–1. The test
liquid was pumped from a small tank with a volume of one litre into an inlet tube in the
bottom of the apparatus. An outlet tube was mounted 8 mm below the cover and connected
to the tank by a hose. The temperature of the liquid in the tank was controlled by a cooling
coil.

Limiting Diffusion Current Method

The measurement of wall velocity gradients by means of the limiting diffusion current is a
well-known technique11. A two-electrode cell consisting of a small working electrode and a
large auxiliary electrode, a solution containing depolarizer and excess supporting electrolyte
is sufficient for measuring the limiting diffusion current. The applied voltage must have a
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FIG. 1
Experimental set-up with Taylor vortices: 1, 2
three-segment electrodiffusion probes, 3 outer
cylinder, 4 inner cylinder, 5 shaft



value at which only the active species react on the working electrode and their concentra-
tion on this electrode is negligibly small. If the Peclet number is sufficiently high, only the
term of the molecular diffusion perpendicular to the electrode surface and convective terms
stay in the mass transfer equation. The transport of species to the working electrode and
thereby the electric current are then controlled only by the velocity field in the vicinity of
the working electrode. The Schmidt numbers are above 1 000 in aqueous solutions of depo-
larizers and so the concentration boundary layer is much thinner than the momentum
boundary layer. The velocity distribution in such a thin concentration boundary layer can
be approximated by a linear profile of slope equal to the velocity gradient at the wall. The
analogous problem of heat transfer was first solved by Leveque12. According to this solution,
the current density is given by

( )
i x nFc D

x
( ) ,= 0

2 3 1 3

1 3 1 39 4 3
γ

Γ
(1)

where x is measured along a streamline from the front edge of the electrode. The current
density and concentration boundary layer on the working electrode are shown in Fig. 2. The
concentration of active species is negligibly small at the electrode surface and equals c0 in
the bulk. The shadows in Fig. 2 stand for concentration. The darker the shadow the smaller
the concentration. The total current is calculated by integration of the current density over
the whole electrode surface. For example, for a strip electrode with length L in the flow di-
rection and width W,

I nFc D WL= 0 808 0
2 3 2 3. .γ1 3 (2)

According to Eq. (1) the current density decreases with x–1/3 and hence the total current de-
pends on L2/3. This fact makes it possible to evaluate the flow direction by using segmented
probes composed of several electrically insulated parts. Three-segment probes are capable of
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flow angle resolution in the whole interval of 360°. An ideal three-segment probe is shown
in Fig. 3. Intensity of current density is denoted by shading. The darker the shading the
higher the current density. If the velocity gradient is uniform, the ratios of currents through
the segments depend only on the flow direction. The dependences of the limiting diffusion
currents through segments, Ik, normalized by the sum of the currents, Itot, on the flow direc-
tion are called directional characteristics. Directional characteristics of the ideal
three-segment probe with negligibly thin insulating gaps, calculated by means of Eq. (1), are
compared with the real directional characteristics of the probe 1 in Fig. 4. The microphoto-
graph showing the surface of this probe is shown in Fig. 5. The real directional characteris-
tics were measured in situ in the laminar Couette flow by turning the probe in steps of 15°
relative to steady azimuthal flow. The characteristics were fitted by fourth-order Fourier se-
ries.

The amplitudes of real characteristics are smaller than those of the ideal probe. This is
due to the finite insulation gaps between segments over which the solution concentration
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FIG. 3
Ideal three-segment probe in uniform flow

FIG. 4
Directional characteristics of probe 1: ∆ segment 1, ❍ segment 2, ❐ segment 3; full lines –
fourth-order Fourier series, dotted lines – ideal probe
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partially recovers. The first coefficient of the Fourier series, i.e. the mean value of the charac-
teristic over the whole angle φ, is proportional to the segment area. It follows from Fig. 5
that the segment areas of the probe are slightly different. In experiments, the flow angle is
evaluated on-line from the measured segment currents. The currents are normalized and
compared. The flow angle is then calculated from the intermediate current because variation
of this current is most sensitive to the flow angle. The accuracy of the flow angle measure-
ment is better than 4°.

The condition of high Peclet number was not fulfilled in our experiments. Therefore the
total current was not proportional to γ1/3 and an empirical relation10

I b b btot = + +− −
1

1 3
2

1 3
3

1 6γ γ γ (3)

was used. The coefficients in Eq. (3) were found by calibration in situ in Couette flow before
each set of measurements.

The limiting diffusion current is revealed by a plateau on the polarogram (I–U depend-
ence). The existence of the plateau is necessary for obtaining reliable results and the
polarogram was therefore measured before each set of measurements. A voltage of –0.8 V
was applied between the working electrodes (cathodes) and auxiliary electrode (anode).

A new method of making use of transient currents was recently described for calibration
and verification of electrodiffusion systems13. Active electrode area, coefficient of diffusion
or species concentration can be calculated from the transient current measured after applica-
tion of polarization voltage step from the equilibrium value to a value corresponding to the
limiting diffusion current. If the above mentioned parameters are constant, the measured
Cottrell asymptote has also constant value. This method was used for verification of our
electrodiffusion system during the measurements of Taylor vortices.

The three-segment probes were made in house. Three platinum wires with a diameter of
0.5 mm were pulled simultaneously through a wire-drawing die, starting with a diameter of
1 mm and finishing with 0.5 mm. After drawing, the wires took a cross-section shape shown
in Fig. 5. The wires were then coated electrophoretically with a polymeric paint and glued
together with Epoxy 1200 (United Chemical and Metallurgical Works, Ústí n. L., Czech Republic).
After soldering the connecting cables, the wires were glued with Epoxy 521 (a product of the
same company) into a stainless steel tube with a tip diameter of 3 mm. The tip was then
ground with emery paper and finally polished with an emery paper with a grit size of 15 µm.
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FIG. 5
Microphotograph of probe 1

0.5 mm



To avoid electrical noise it was necessary to join all stainless steel parts of the Couette appa-
ratus which are in contact with the electrolyte and to polarize them as counter electrode.
Hence, the electrode tube was connected to the stainless steel shaft and the inlet and outlet
tubes. A small piece of platinum sheet was put into the inlet tube.

The three-segment probes were connected to a six-channel electrodiffusion analyzer,
which applied the polarization voltage to the electrodes and converted the currents flowing
through the electrodes into voltages. The analyzer was controlled by a PC via an A/D and
D/A card. The data were treated on-line to give velocity gradient components which were
shown in a phase diagram on the screen.

The test liquid was a 25 mol m–3 equimolar potassium hexacyanoferrates (III) and (IV)
aqueous solution (nF = 96 485 C mol–1) with 1.5% b.w. K2SO4 as supporting electrolyte. The
addition of 3% b.w. of poly(alkylene glycol) Emkarox 45 (ICI, Frankfurt, Germany) en-
hanced the dynamic viscosity of the resulting electrolyte to 2.52 mPa s at 23 °C. The density
of the electrolyte was 1 024 kg m–3. The flow was visualized by addition of a few drops of
rheoscopic liquid AQ-1000 (Kalliroscope Corp., U.S.A.). The rheoscopic liquid contains small
laminae reflecting light in dependence on their orientation which follows the flow direction.

Kinematics of Taylor Vortices

When the Taylor number reaches a critical value, laminar Couette flow is no longer stable
and disturbances appear which ultimately take the form of cellular, toroidal vortices, regu-
larly spaced along the axis z. The cylindrical coordinates, r, θ, z, the corresponding velocity
components, υr, υθ, υz, and a “stream tube” of a Taylor vortex are shown in Fig. 6. The ve-
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FIG. 6
Schematized flow situation: 1 probe, 2 Taylor vortex tube



locity field measured by probe 1 is shown in a magnified view. The velocity components of
a steady vortex have axial symmetry (do not depend on θ) and are periodic functions of z:

υ υ α ϕr rk
k

rkr z r k z r( , ) ( )cos[ ( )]= +∑ (4)

υ υ υ α ϕθ θ θ θ( , ) ( ) ( )cos[ ( )]r z r r k z rk
k

k= + +∑ (5)

υ υ α ϕz zk
k

zkr z r k z r( , ) ( ) sin[ ( )] .= +∑ (6)

The phases ϕik are always equal to 0 at the outer wall and can achieve values of 0 or π else-
where. The origin of z is in the plane where υr exhibits its maximum, that is in the “stagna-
tion line” of a jet impinging on the outer wall (γθ(z = 0) = max and γz(z = 0) = 0).

Linear theory14 predicts the critical Taylor number and wavenumber of the vortices. Non-
linear theories15,16 take into account the distortion of the mean flow by disturbances and
are capable of predicting the growth of velocity components with Taylor number. Critical
Taylor numbers are given in a recent review17. The axial, υz, and radial, υr, velocity compo-
nents are related by the equation of continuity, υ ∂υ ∂ ∂υ ∂r r zr r z+ + = 0.

As the concentration boundary layer at the electrodiffusion probe is very thin, we can ne-
glect the curvature of the wall and introduce a new coordinate y = R2 – r, which represents
normal distance from the wall. Only two components of the velocity gradient tensor have a
nonzero value at the outer wall

∂υ
∂

γ γ γ αθ
θ θy

z k z
y

m k
k=

≡ = + ∑
0

( ) cos (7)

∂υ
∂

γ γ αz

y

z zk
ky

z k z
=

≡ = ∑
0

( ) sin . (8)

The azimuthal, γθ, and axial, γz, components can be evaluated by the three-segment probes
from the directional characteristics under the assumption that the normal velocity, υr, is
negligible or, in other words, that the axial component does not depend strongly on z
(ref.18).

The rate of deformation tensor is necessary for the calculation of the shear stress tensor.
The components of the shear rate tensor at the wall are identical with the components of
the velocity gradient tensor. Hence for the shear stress components on the outer wall (r =
R2) holds: τ µγ τ µγθ θr rz zz z z z( ) ( ) , ( ) ( ).= =

RESULTS AND DISCUSSION

The experiments were carried out as follows. The gap between the cylinders
was filled with the solution up to the outlet tube and the pump was
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stopped. The rotation rate was very slowly increased from a value corre-
sponding to laminar Couette flow and γθ and γz were followed on the screen
in a phase diagram and flow pattern in the gap was observed. When the
first disturbance appeared, the revolutions were kept constant and it took
several minutes until Taylor vortices were fully developed. The first distur-
bance manifested itself by a nonzero γz value and a fully developed stable
vortex by constant values of γθ and γz. An axial upwards flow was then
started. Taylor vortices were swept by this flow. The vortex at the bottom
was stable whereas the next one elongated until it split periodically into
two vortices. The movement of vortices along the probes was regular as
shown in Fig. 7. There is a time history of γθ and γz of two pairs of vortices,
measured by the two probes. The sampling frequency of the segment cur-
rents was 3 000 s–1. Instantaneous values of γθ and γz were calculated
on-line and their mean values and standard deviations were recorded every
0.9 s. For better distinction, only every third point is depicted in Fig. 7. By
using two electrodiffusion probes, the measured velocity gradient compo-
nents are verified immediately. The vertical shift of the probes makes it pos-
sible to calculate the wavelength and sweeping velocity of Taylor vortices.
The time lag between signals is denoted by s and corresponds to the vertical
distance of 5 mm between the probes, see Fig. 1. The wavelength can be
then calculated from the period T. The periodicity of γθ and γz shown in Fig. 7
over two periods indicates that the subsequent moving Taylor vortices are
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FIG. 7
History of velocity gradient components at η = 0.65 and Ω = 1.05 rad s–1. Probe 1: ■ γθ, ◆ γz;
probe 2: ∆ γθ, ❍ γz

0 50 100 150 200 250 300t, s

t, s

s T
4

3

2

1

0

–1

–2

γθ, γz

s–1



identical. Relative deviations between corresponding amplitudes measured
by two probes were smaller then 10%. These deviations were caused mostly
by calibration errors due to non-circularity of the outer cylinder.

Critical Taylor numbers were estimated in three different ways. The first
was by on-line measurement of γz, which is different from zero when a dis-
turbance appears in the Couette flow. This component is also zero at the
“stagnation lines” of a stable Taylor vortex, but during the transition the
flow is not stable. The second method uses flow visualization with a rheo-
scopic liquid. The most precise way is to evaluate Tac as the intersection of
the extrapolated measured dependences of the velocity gradient or its arbi-
trary component of the Coutte flow and the Taylor vortex flow. This
method gives the best results which are very close to the values reviewed by
Di Prima and Swinney17 and will be elucidated later on. Measured critical
rotation rates, velocity gradients and Taylor numbers are summarized in Ta-
ble I. The dependence of Tac on η is shown in Fig. 8. In the interval η ∈
〈0.5,1〉 , the data17 can be fitted using relation

Tac = 36.2 (η – 0.256)–0.445 , (9)

which has a standard deviation of σ = 0.24.
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FIG. 8
Dependence of critical Taylor number on radius ratio: ❍ full line – least square fit of pub-
lished data17, ∆ present measurements
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In Fig. 9 the dependences of γ, γθ and γz on the z coordinate are depicted
for the extreme values of rotation rate in all four gap widths. In the smallest
gap, η = 0.8, not far above the Tac, the γ(z), γθ(z) and γz(z) have near-
sinusoidal form, which can be described by the first harmonics and γθ(z)
merges into γ(z). The greater the gap and rotation rate the more harmonics
are necessary and the greater are deviations between γ(z) and γθ(z). The
form of γz(z) in Figs 9f and 9h resembles the wall velocity gradient distribu-
tion near the stagnation point of an impinging jet. Near the “stagnation
lines”, γz(z) = 0, z = kπ/α (k = 0, 1, ..., n), where the change of γz with z is
rather strong, the condition of uniform velocity gradient on the probe area
is violated. The estimation of flow angle from the directional characteristics
measured in viscometric flow is then not exact. The profiles of measured
velocity gradient at γz = 0, especially that of γ(z) and γθ(z), are slightly asym-
metric. This asymmetry is smoothed by fitting the data by Fourier series.
The amplitudes of the harmonics follow from Fig. 10 where they are shown
as a function of rotation rate for all four measured geometries.

It is possible to generalize the dependences of the harmonics on rotation
rate by dividing the harmonics by the critical velocity gradient of transition
to Taylor vortex flow, γc, and Taylor number by its critical value (see Fig. 11).
These dependences were fitted by second-order polynomials with results
summarized in Table II.

Couette–Taylor flow has often been studied by torque measurements. The
torque, G, can be calculated from the mean value of γθ(z), γm, on the outer
cylinder. It is convenient to introduce the dimensionless torque G* as the
mean velocity gradient on the inner cylinder divided by the rotation rate.
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TABLE I
Main experimental parameters, transition values, wavelengths of vortices and axial Reynolds
numbers

η R1
mm

d
mm

Ωc
rad s–1

γc
s–1 Tac

T
°C

ν . 106

m2 s–1
λ

nm
Reax

0.80 24.25 6.05 1.560 5.55 46.9 23 2.46 13.7–14.7 0.29

0.75 22.75 7.55 1.211 3.11 49.3 24 2.39 16.3–17.5 0.45

0.65 19.70 10.60 0.911 1.33 55.3 23.3 2.44 20.8–24.3 1.11

0.60 18.20 12.10 0.806 0.91 58.8 23 2.46 24.1–28.9 1.14
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FIG. 9
Examples of γ, γθ and γz axial distribution: thick lines γθ and γz, thin line γ; η = 0.8: a Ω =
1.56 rad s–1, b Ω = 1.97 rad s–1; η = 0.75: c Ω = 1.2 rad s–1, d Ω = 3.98 rad s–1; η = 0.65: e Ω =
0.911 rad s–1, f Ω = 5.24 rad s–1; η = 0.6: g Ω = 0.942 rad s–1, h Ω = 7.33 rad s–1
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R L

m* = =
Ω Ωµ

πγ
η1

2 2

2
(10)

G* of the laminar Couette flow depends only on η, G* = 4π/(1 – η2). The
measured dependences of G* on Ta are shown in Fig. 12. The critical Taylor
number could be found as intersection of the extrapolated dependence
G*(Ta) for Taylor vortex flow with Couette flow. It is obvious that for evalu-
ation of G it is necessary to use a three-segment probe, because a simple
probe gives only γ(z), from which it is impossible to get a correct value of
γm.

The dependence of the torque on Taylor number can be expressed as
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FIG. 10
Dependence of Fourier coefficients, Eqs (7) and (8), on η and Ω: a η = 0.8, b η = 0.75, c η =
0.65, d η = 0.6; ■ γm, ◆ γθ1, ▲ γθ2, ▼ γθ3, ● γθ4, ❐ γz1, ✧ γz2, ∆ z3, ∇ γz4, ❍ γz5
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G aTa bTac* .= +−2 (11)

Stuart15 found the torque by an energy-balance method for the limiting
case of a small gap, η → 1. His result is expressed by Eq. (11) with c = 0.
Davey16 used a rigorous perturbation expansion for solving the velocity of
Taylor vortices under the assumption that the amplitude is sufficiently
small. According to Davey, the exponent c again equals zero, but the coeffi-
cients a and b are different from those of Stuart. Donnelly and Simon8 fit-
ted several sets of torque measurements and found that c ∈〈 1.33,1.5〉 .
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FIG. 11
Generalized dependence of Fourier coefficients, Eqs (7) and (8) on reduced Taylor number:
❍ experimental points, full lines – fit by second-order polynomials
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Batchelor in an appendix to ref.8 assumed that the vortex flow consists of
inviscid cores surrounded by boundary layers and found that c = 1.5. Such a
flow occurs at high Taylor numbers where the first term in Eq. (11) equals
zero. The solutions of Stuart15 and Davey16 give coefficients a and b, but
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FIG. 12
Dependence of dimensionless torque on Taylor number, Eq. (11): ❐ η = 0.8, a = –76 500, b =
70.4, c = 0; ✧ η = 0.75, a = –26 700, b = 6.90, c = 0.462; ∆ η = 0.65, a = –23 600, b = 5.43, c =
0.424; ❍ η = 0.6, a = –96.4, b = 2.78, c = 0.476
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TABLE II
Coefficients of polynomial fit γik = a1(Ta/Tac)

2 + a2(Ta/Tac) + a3

a1 a2 a3 ℜ

γm 0.0850 2.6122 –1.7950 0.9944

γθ1 0.1484 1.9019 –1.7916 0.9964

γθ2 0.1054 –0.1081 –0.0045 0.9905

γθ3 0.0670 –0.2374 0.1869 0.9790

γθ4 0.0270 –0.1913 0.2246 0.9760

γz1 0.1955 2.0303 –1.9527 0.9993

γz2 0.2688 0.2561 0.6163 0.9983

γz3 0.1427 –0.3231 0.1712 0.9944

γz4 0.0714 –0.3689 0.3506 0.9870

γz5 0.0258 –0.1895 0.2247 0.9722



they cannot be used to fit our experimental data with the exception of the
Davey results valid not far beyond Tac. Therefore, our results for η = 0.8
were fitted by Eq. (11) with c = 0 and the results for η = 0.75, 0.65 and 0.6
by Eq. (11) with all terms. The full lines in Fig. 12 show these fits and the
resulting values of a, b and c are given in the figure legend.

The wavelengths of vortices were calculated for each measurement and
were found to be in the interval 〈2d,2.4d〉 (Table I). The axial velocity of
vortices was about 10% higher than the mean axial velocity in the gap. The
wavelengths of vortices were found to be smaller than 2d in our previous
paper10. This was due to the unrealistic assumption that the vortices move
with the mean axial velocity of the liquid.

CONCLUSIONS

Three-segment electrodiffusion probes are very convenient for measure-
ments of the components of wall velocity gradients. The tangential and ax-
ial components of the wall velocity gradient at the outer wall of a
Taylor–Couette flow with the inner cylinder rotating were mapped for four
radius ratios, η = 0.8, 0.75, 0.65 and 0.6.

Jet-like flow was found at higher rotation rates. Stagnation lines of axial
velocity occur at the outer wall where the jet impinges the wall, and separa-
tion lines where the liquid leaves the wall. As the flow is very stable, both
lines are stable. The gradient of tangential velocity has a maximum value at
the stagnation line and a minimum at the separation line.

The time histories of the velocity gradient components were described by
fourth-order Fourier series. Generalized dependences were found of the
Fourier series coefficients on the normalized Taylor number.

The axial velocity of vortices is about 10% higher than the mean velocity
of the drifting flow.

The three-segment probes make it possible to calculate the torque from
the mean value of the measured tangential component of the wall velocity
gradient.

SYMBOLS

a, b, c coefficients of Eq. (11)
a1, a2, a3 coefficients of polynomial fit (Table II), s–1

b1, b2, b3 coefficients of Eq. (3), A s1/3, A s–1/3, A s–1/6

c concentration of depolarizer, mol m–3

c0 concentration of depolarizer in bulk, mol m–3

D coefficient of depolarizer diffusivity, m2 s–1
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d width of the gap between cylinders, m
F Faraday constant, 96 485 C mol–1

G torque, N m
G* dimensionless torque, Eq. (10)
i density of limiting diffusion current, A m–2

I limiting diffusion current, A
Itot total limiting diffusion current through segmented electrode, A
L electrode length, m
n number of electrons taking part in the electrochemical reaction
Pe Peclet number, Pe = γL2/D
Reax Reynolds number of axial flow, Reax = υaxd/ν
R1, R2 radii of inner and outer cylinders, m
ℜ correlation coefficient (Table II)
r, θ, z cylindrical coordinates, m, rad, m
s lag between currents of probes, s
Sc Schmidt number, Sc = ν/D
t time, s
T period of probe current, s
Ta Taylor number, Ta = ΩR d1

1 2 3 2 1ν−

υ velocity, m s–1

υax axial drifting velocity, m s–1

U voltage between working and auxiliary electrodes, V
W electrode width, m
x, y Cartesian coordinates, m
α wavenumber, rad m–1

δ thickness of concentration boundary layer, m
φ angle between reference radius of probe and flow direction, rad
ϕ ik phase in Eqs (4)–(6), rad
γ magnitude of velocity gradient, γ = ( )γ γθ

2 2 1 2+ z , s–1

γθ azimuthal component of velocity gradient at wall, Eq. (7), s–1

γz axial component of velocity gradient at wall, Eq. (8), s–1

γm mean value of azimuthal component of velocity gradient, Eq. (7), s–1

γik harmonics of velocity gradient components, Eqs (7) and (8), s–1

µ dynamic viscosity, Pa s
ν kinematic viscosity, m2 s–1

η radius ratio, η = R1/R2
Ω rotation rate of inner cylinder, rad s–1

Subscripts

c transition from laminar Couette flow to Taylor vortices
i r, θ, z
k ordinal of harmonics
r, θ, z cylindrical coordinates
x, y Cartesian coordinates
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